If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+558t=0
a = -16; b = 558; c = 0;
Δ = b2-4ac
Δ = 5582-4·(-16)·0
Δ = 311364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{311364}=558$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(558)-558}{2*-16}=\frac{-1116}{-32} =34+7/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(558)+558}{2*-16}=\frac{0}{-32} =0 $
| (x-8)÷12+(x+4)÷4=(x+1)÷3 | | 8(x+56)+2(x-4)=32 | | (x-8)÷12+(x+4)=(x+1)÷3 | | 6x+1+4x=8x-3+2x | | 1/3(5-w)=-2 | | 5m×5m= | | 0=4n^2+64n | | 3(2x-1)=4(x+1)+2 | | 16=v|4-8 | | 2x+28=30 | | 3y+90=300 | | 90*x÷100=90 | | 5y^2+4=-36 | | 3(2x+1/5=2x-5 | | 100-10*x÷100=90 | | -224x+21x^2=77 | | 100-10*x÷100=90 | | 6n-3=4n+21 | | x+10=60+10-20 | | 9x=48−7x | | 0.18=8/x | | 6(7x-1)=2(3+11) | | 5a-10=a | | 6n+13=6 | | X÷2=2x | | X²+4y²=372 | | 5x2x=5+2x | | (1+x)²=2(5-1)÷2 | | 8m=3=4m-11 | | 3e+3=5e−17 | | 0.1*x=90 | | 0.1*x=10 |